\square

PART - A

Answer ALL questions

1. Find the $\mathrm{n}^{\text {th }}$ derivative of $y=\log (a x+b)$.
2. Find the polar subtangent and polar subnormal of the curve $r=a \theta$.
3. Write the Cartesian formula for the radius of curvature.
4. Define evolute of a curve.
5. Find the equation, with rational coefficients one of whose roots is $\sqrt{5}+\sqrt{2}$
6. Calculate the sum of the cubes of the roots of the equation $x^{4}+2 x+3=0$.
7. Show that $\cosh ^{2} x-\sinh ^{2} x=1$.
8. Write the expansion of $\sin n \theta$.
9. Define conjugate diameter of an ellipse.
10. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

PART - B

Answer any FIVE questions
11. Find the $\mathrm{n}^{\text {th }}$ differential coefficient of $\cos x \cdot \cos 2 x \cdot \cos 3 x$.
12. Using Lagrange's multipliers method find the minimum value of u, where $u=a^{3} x^{2}+b^{3} y^{2}+$ $c^{3} z^{2}$ with the condition $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
13. Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$ and $y=a(1-$ $\cos \theta)$ is $4 \operatorname{acos} \frac{\theta}{2}$.
14. Solve the equation $81 x^{3}-18 x^{2}-36 x+8=0$ whose roots are in harmonic progression.
15. Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
16. Show that the eccentric angles at the extremities of a pair of semi conjugate diameters of an ellipse differ by a right angle.
17. Derive the polar equation $\frac{l}{r}=1+e \cos \theta$ of a conic.
18. Show that in a conic the semi-latus rectum is the harmonic mean between the segments of a focal chord.

PART - C

Answer any TWO question

19. If $y=\sin \left(m \sin ^{-1} x\right)$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and

$$
\left(1-x^{2}\right) y_{n+2}-
$$ $(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.

20. (a) Find the angle of intersection of the curves $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
(b) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
21. Solve the equation $6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$.
22. (a) Sum to infinity $c \sin \alpha-\frac{c^{2}}{2} \sin 2 \alpha+\frac{c^{3}}{3} \sin 3 \alpha+\cdots \infty$.
(b) If e and e_{1} are two extremities of hyperbola and its conjugate, show that $\frac{1}{e^{2}}+\frac{1}{e_{1}{ }^{2}}=1$.
