# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS



# MT 1500 – ALGEBRA, ANALY. GEO., CALCULUS & TRIGONOMETRY

 Date: 24-10-2018
 Dept. No.
 Max. : 100 Marks

 Time: 09:00-12:00
 Max. : 100 Marks

### PART – A

# Answer ALL questions

- 1. Find the n<sup>th</sup> derivative of  $y = \log(ax + b)$ .
- 2. Find the polar subtangent and polar subnormal of the curve  $r = a\theta$ .
- 3. Write the Cartesian formula for the radius of curvature.
- 4. Define evolute of a curve.
- 5. Find the equation, with rational coefficients one of whose roots is  $\sqrt{5} + \sqrt{2}$
- 6. Calculate the sum of the cubes of the roots of the equation  $x^4 + 2x + 3 = 0$ .
- 7. Show that  $\cosh^2 x \sinh^2 x = 1$ .
- 8. Write the expansion of  $\sin n\theta$ .
- 9. Define conjugate diameter of an ellipse.
- 10. Find the asymptotes of the hyperbola  $3x^2 5xy 2y^2 + 17x + y + 14 = 0$ .

#### PART - B

#### **Answer any FIVE questions**

 $(5 \times 8 = 40)$ 

 $(10 \times 2 = 20)$ 

- 11. Find the n<sup>th</sup> differential coefficient of  $\cos x \cdot \cos 2x \cdot \cos 3x$ .
- 12. Using Lagrange's multipliers method find the minimum value of u, where  $u = a^3x^2 + b^3y^2 + c^3z^2$  with the condition  $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ .
- 13. Prove that the radius of curvature at any point of the cycloid  $x = a(\theta + \sin \theta)$  and  $y = a(1 \cos \theta)$  is  $4 \cos \frac{\theta}{2}$ .
- 14. Solve the equation  $81x^3 18x^2 36x + 8 = 0$  whose roots are in harmonic progression.
- 15. Express  $\frac{\sin 6\theta}{\sin \theta}$  in terms of  $\cos \theta$ .
- 16. Show that the eccentric angles at the extremities of a pair of semi conjugate diameters of an ellipse differ by a right angle.

- 17. Derive the polar equation  $\frac{l}{r} = 1 + e \cos \theta$  of a conic.
- 18. Show that in a conic the semi-latus rectum is the harmonic mean between the segments of a focal chord.

### PART - C

 $(2 \times 20 = 40)$ 

#### **Answer any TWO question**

- 19. If  $y = \sin(m \sin^{-1} x)$ , prove that  $(1 x^2)y_2 xy_1 + m^2 y = 0$  and  $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$ .
- 20. (a) Find the angle of intersection of the curves  $r = a(1 + \cos \theta)$  and  $r = b(1 \cos \theta)$ .
  - (b) Find the evolute of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .
- 21. Solve the equation  $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$ .
- 22. (a) Sum to infinity  $c \sin \alpha \frac{c^2}{2} \sin 2\alpha + \frac{c^3}{3} \sin 3\alpha + \cdots \infty$ .

(b) If e and  $e_1$  are two extremities of hyperbola and its conjugate, show that  $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$ .

\*\*\*\*\*